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ATMOSPHERIC WAVES CAUSED BY LARGE EXPLOSIONS

By J. N. HUNTY, R. PALMER anp SIR WILLIAM PENNEY, Treas.R.S.
Atomic Energy Authority

(Recetved 27 May 1959)
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This paper considers the harmonic oscillations of several simple model atmospheres. The oscilla-
tions are of two types. In the first, the kinetic energy per unit volume tends to zero at great heights;
in the second, the kinetic energy per unit volume remains finite. A large explosion at ground level
excites a spectrum of both types of oscillation. The pulse ultimately separates into two parts—a
train of travelling waves which can be observed at ground level at great distances, and a train of
travelling waves which disappear into the upper atmosphere.

The complete range of experimental observations on the pressure oscillations caused by explosions
of energies varying between 10%° and 10%* ergs can only be interpreted with model atmospheres
having one or more sound channels, i.e. having at least one minimum in the temperature-height
relationship of the atmosphere. In spite of the complexity of the phenomena, the theory throws
light on some of the characteristic features of the observations. The average period of the largest
waves is roughly proportional to the cube root of the energy released by the explosion. The
amplitudes of the waves from large explosions can be calculated. Conversely, good records enable
the size of the explosion to be estimated.

The energy of the Siberian meteorite of 1908 was about 106 cal, or 10 MT (T signifying a ton
of t.n.t.).

1. INTRODUCTION

1 Now at Imperial College of Science and Technology, London, S.W. 7.

VoL. 252. A.r1orr. (Price 13s.) 34 [Published 18 February 1960

There have been several attempts at a theory of the waves generated in the atmosphere by
the release of energy from a source which is concentrated in space and time. The Krakatoa
volcanic eruption of 1883, and the great Siberian meteorite of 30 June 1908, are the two
natural phenomena to which the theory has so far been applied, but today the air waves
generated by a point source of energy have a new important application. Some nuclear
explosions in the atmosphere are sufficiently powerful to generate a train of atmospheric
waves which can be detected by sensitive but standard microbarographs at distances of
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276 J. N. HUNT, R. PALMER AND SIR WILLIAM PENNEY ON

a few thousand kilometres. For example, Japanese meteorological stations have recorded
air waves from nuclear explosions made by the United States and by Russia. Specially
developed arrays of microbarographs are capable of recording waves from point sources of
energy (nuclear explosions, meteors, rock slides, volcanic eruptions) as small as about
10%° ergs at distances exceeding 1000km. The East-West Conference on the technical
feasibilities of a world-wide control system for detecting and identifying nuclear explosions,
held at Geneva in July and August of 1958, discussed the ‘acoustic’ and other methods of
detection at great length. However, it was clear that no satisfactory theory of the formation
of the “acoustic’ waves has so far been constructed. The present paper is an attempt at
clarifying the physics of the situation and giving a basic theoretical interpretation of the
freely travelling atmospheric waves, or ‘gravity waves’ as they are often called.

The early versions of the theory have sought mainly to explain the observation that the
speed of propagation of the disturbance is slightly less than the speed of sound at ground
level (see Lamb’s Hydrodynamics).

The later contributions of Pekeris (1937, 1939, 1948) and particularly of Scorer (1950)
went further and attempted to derive pressure—time variation in the air at ground level
from an explosion at ground level.

There appears to be one route which makes analysis manageable, and this route falls
into two parts. The first is a discussion of the harmonic oscillations of various simple model
atmospheres in terms of wavelength and frequency; the second is the representation of the
wave system generated by an explosion as a Fourier integral. Even an idealized treatment
of this type involves a great deal of arithmetic, and some of the numerical results described
in the present paper were obtained by the use of a large computer, the I.B.M. 704.

The discussion of the free oscillations of the atmosphere proceeds as follows. The hydro-
dynamic equations are linearized, assuming axial symmetry and neglecting dissipative
terms. Simple models of the atmosphere are assumed. Winds and topographical features
such as mountain ranges are neglected. Periodic oscillations are sought. Sometimes the
vertical velocity is taken as negligible, in which case the rotation of the earth must be in-
cluded because the harmonic periods of interest are several hours in duration (see, for
example, Pekeris 1937, 1939, 1948; Wilkes & Weekes 1947). In other cases, such as are
treated in the present paper, the vertical velocity is retained but the rotation of the earth
can be neglected because the harmonic periods of interest are of the order of minutes or
seconds.

To represent an explosive source, Fourier integrals of the fundamental modes are con-
structed ; and the evaluation of these integrals at later times gives the wave train generated
by the source.

Though discussion of the free oscillations is subject to all of the approximations of
linearized theory, and even then involve obscurities such as the velocity increasing in-
definitely with height, there is no doubt that the results following from this part of the
treatment are physically acceptable in the problems we are attempting to solve. It is
otherwise with the second part which treats the explosive source by means of Fourier
integrals. The difficulty is to represent the phenomena arising from an explosion with any
degree of completeness by means of a Fourier analysis applied to a realistic model of the
atmosphere.
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An explosion in the air sends out a blast wave led by a shock which heats the air irrever-
sibly. Near the place where the explosion occurs, the air is left hot and expanded, even when
the pressure has returned to atmospheric. Scorer (1950) calculates the gravity waves in the
atmosphere as equal to those which would be caused by the introduction of a certain volume
of air into the atmosphere. This volume is taken as equal to the expansion of the air caused
by heating of the air at constant pressure by the whole energy of the explosion. If the
explosion releases energy E cal the expansion is then 11E cm?3.

In stating these approximate figures, we have glossed over the fact that a great deal of
radiant energy is emitted by the shock front in the early time after the explosion has
occurred. A nuclear explosion in ‘free air’ may radiate one-half of the total energy in the
form of light and heat. Presumably the major part of this radiant energy escapes ‘ to infinity’
in the sense that it does not contribute to the gravity waves. A little of the energy is absorbed
in the air within a few miles of the explosion, and this energy will contribute. Some of the
energy will vaporize some of the material of the ground, and because the vapour will
recondense within a few seconds, some of this energy will again be put into the air, thus
adding a little to the energy available for making gravity waves. A nuclear explosion on the
ground will radiate less heat and light ‘to infinity’ than the same explosion well above the
ground. A large chemical explosion on the ground, or a natural event such as the impact
of the Siberian meteorite, will radiate less energy as light and heat than a nuclear explosion
of the same total energy, but the numerical values are not known. The energy put into the
ground as shock or cratering from any large surface explosion is only a few parts per cent
of the total energy.

The kinetic energy in the blast wave can be calculated from experimental data given by
U.S.A.E.C. (1957). When the blast from a nuclear explosion on the ground has reached a
radius at which the shock overpressure is 1 Lb./in.2, the kinetic energy in the positive phase
is approximately 8 9, of the total energy released by the explosion, and the kinetic energy
in the negative phase is approximately 0-5%,. Hence the energy at this stage has been
partitioned approximately in the following way: kinetic energy in the blast 10 9, radiated
away from the region of the explosion as electromagnetic radiation 20 to 30 %,, cratering
and ground shock 1 to 5 %,, and the remainder of about 55 to 70 %, as heat and compres-
sional energy in the air.

Thus, the figure of 11cm? expansion per calorie of explosive energy must be re-
garded as an upper limit. It might apply to small chemical explosions well above the
ground.

The most satisfactory method of estimating the expansion of the air per calorie of ex-
plosion energy is to fit the observed pressure-time variation in the blast from explosions,
at a low pressure level, to the theory of sound, and thus calculate the point source which
would by sound theory cause the blast wave at this low pressure level. This calculation is
made in §7. It appears that a nuclear explosion on the ground causes an expansion of
8 cm?3 per calorie of energy released.

In the case of the Siberian meteorite, we guess that the amount of light and heat radiated
was less than it would be from a nuclear explosion. However, more energy would pro-
portionately have gone into the ground. The figure of 8 cm? of air expansion per calorie
of total energy might again be a reasonable approximation.

342
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The hot air bubble left behind by a large explosion rises rapidly as a nearly spherical
vortex, entraining air as it rises, and effectively coming to rest in 5 to 10 min at the
‘stabilized height’. We must consider if this rising motion is an efficient producer of gravity
waves.

The motion of the air caused by the rise of the hot air bubble is very roughly the same as
that in potential flow in an incompressible medium. The bubble from a 1 megaton ex-
plosion on the ground is at a height 7 km 1 min after burst. The radius is less than 2 km and
the rate of rise is 7 x 10%cm/s. At a horizontal distance of 10km from the centre of the
bubble, the pressure due to the rising motion of the bubble will reach a (negative) maxi-
mum of about 80 dyn/cm?. This pressure pulse would propagate outwards with an ampli-
tude decreasing at least as fast as 771, and the maximum (negative) pressure at 1000 km

[ T [
100~ .
upper sound channel
g
=
+)
&
3 504 -
<
lower sound channel
0 | I I
200 250 300

temperature (°K)

Ficure 1. The temperature-height variation of the atmosphere based on pressure and density data
obtained on rocket flights above White Sands, New Mexico (Havens, Koll & La Gow 1952).
There are two well-defined sound channels.

would be at most only a few dynes/cm? at ground level. This is two orders of magnitude
smaller than the pressure oscillations arising from the blast. Similar conclusions apply to
kiloton explosions. We may therefore neglect the gravity waves due to the rising motion of
the hot air bubbles. In brief, the great heat content of the hot air bubble causes a mass of
air to be lifted, but this motion is an inefficient producer of gravity waves.

In the present paper, we are concerned almost entirely with trains of gravity waves
which can be observed at ground level from explosions on or near the ground. Reasons
will be given for approximating to the atmosphere with various two-layer models, and
more realistically with three-layer models. These models are adequate to give an explana-
tion of the mechanics of the phenomena in fair numerical agreement with experiment.

However, we do not discuss the effects of winds. In comparing our numerical results with
observations, we take average experimental values and assume that these are what would
be obtained if there were no winds.
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Yamamoto (1957) has recently published an interesting paper reproducing some of the
microbarograms of nuclear explosions, given in earlier papers, and calculating the normal
modes of two-layer and four-layer atmospheres. His mathematics is superficially different
from that given in the early parts of the present paper, but fundamentally the two treat-
ments are similar. However, his arithmetic is not accurate enough nor sufficiently complete
for our purpose. Yamamoto is interested in the fact that the microbarograms of the pulses
from large explosions begin with waves of relatively long period, but the later waves have
periods perhaps as small as 0-2min. A two-layer atmosphere, with the upper layer colder
than the lower layer, has a cut-off period of not less than 1-5 min and Yamamoto deduces
that the microbarograms cannot be explained in terms of a two-layer model. Yamamoto
therefore studied the harmonic oscillations of a four-layer atmosphere, the top layer being
the warmest of the four. He finds that harmonic oscillations with a period 0-5min, and
probably shorter, are possible. Moreover, the group velocity is not a monotonic function
of period, and has a minimum. We agree with these conclusions, but Yamamoto has
missed the existence of additional solutions which are of fundamental importance for
understanding the gravity waves caused by large explosions. Yamamoto does not consider
the problem of calculating the pulse generated by an explosion.

Since it is necessary, later in this paper, to approximate to the atmosphere with various
simplified models, it will be useful to have available the best average temperature-height
distribution. This is shown in figure 1.

2. PRESSURE EQUATIONS

We follow Scorer (1950) in his derivation of linearized equations for the spatial variation
of pressure for a simple harmonic motion in the atmosphere with a given frequency .
Since dissipative processes are neglected, we consider only real values of ¢.

The suffix zero will denote values in a stationary unperturbed atmosphere. Spherical
polar co-ordinates (0, ¢, z) will be used to denote the point where the velocity is u or (u, v, w).
Great circle distances on the earth’s surface are given by r = afl, where a is the radius of the
earth.

The reciprocal of potential temperature is denoted by

7470 = (T+T0) " [(£+p0) o)™ (1)
and a ‘modified’ pressure by
o+ay = [YR/(y=D)][(£+100) [po]D7, (2)

where T'+7j is the absolute temperature, p-+p, the pressure, p+p, the gas density, R the
gas constant and y the ratio of specific heats. In a horizontally stratified atmosphere,
Tos Wos Los Pos Po are all functions of z alone. The perturbation variables 7, w, T, p, p are
assumed sufficiently small for terms of the second and higher orders to be neglected. The
equatlon of state is P‘]‘/?o - (,0"|“,00) R(T—}~ T;)), (3)
where R is the gas constant per gram of air (2:87 x 10°c.g.s.).
Since the motion is assumed adiabatic, we have the relation
D(7+7,) /Dt =0

or ioT+710 = 0, (4)
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where D/Dt =u.grad +d/dt
and primes denote d/dz.
If we neglect the earth’s rotation, the equations of motion and continuity are

(p+po) Du/Dt = —grad (p+po) +(p+po) (0, 0, —g), (5)
Di(p-+p3) [Dt-+ (p+p,) div u — 0. (6)
Writing the adiabatic condition in the form
D(p+po) /Dt = ¢*D(p+po) /D, (7)
where & = ypolpy = YRT,,

we can eliminate (p+p,) and (p+ p,) between equations (5), (6) and (7) giving
—gw—+icw|Ty+c2divu = 0, (8)

where ¢ is a function of z only.
From equations (1), (2) and (3), we find that 7 and @ are related by

(1+7,) grad (p-+p,) = (p+p,) grad (w+a,),

so that, for small motions, equation (5) reduces to
(1+7,) 0u/dt = —grad (w+w,) + (1+7,) (0, 0, —g).

The three components of this equation are

a0t u+0w/df = 0, (9)
iasin Goryv+0w/dp = 0, (10)
(0o +g70) w+ 0 dw/dz = 0, (11)

where we have used the relation between the unperturbed functions, namely
870+ 0w, [0z = 0.

Taking equations (4), (8), (9), (10) and (11), we can eliminate u, », w and 7, thereby
obtaining an equation for the modified pressure @,

sin?f(cot 0+ 0/00) dw/d0 + 0%*w|0$*+ a®sin? Oo%c 2w
—T1oa%sin?0(ge=2—0/0z) [{0?/ (0?1, + g1) } 0w/0z] = 0.

This equation is separable, and if we write

@ = w,(z) B,(0) 75(9) €%, (12)

then
o} (z) —[{(g70+0%70) [ (870 + 0%7) } + ge 2] @y (2) + (g7o/To+07) (¢72—K*0~2) @y (2) = 0, (13)
(cot 0+ 0/30) wy(0) + (a?k?+m? cosec? ) wy(0) = 0, (14)
and @3(4) —m*ws(p) = 0, (15)

where £2 and m? are separation constants. Clearly @,(z) is a function also of the parameters
o and k; @,(0) is a function of the parameters £ and m, and @,(¢) is a function of m. It may
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be seen that the § variation in @ given by equation (14) is independent of the nature of the
unperturbed temperature-height structure of the atmosphere, unlike the z-component @,.

If we consider only motions in which there is symmetry about the ¢ axis, then m = 0
and from equations (9), (10) and (11) we find

u = (ifo1,) el w,(2) dwy(r/a) [0, (16)
v =0, (17)
w = [io/(0?1y+g7y) ] €7t wy(r/a) 0w, (2) 0z. (18)
For this case, the solution of equation (14) is |
@,(0) = PY(cos?), (19)
where v(v+1) = k22, (20)

Since kais large compared with unity, £a is very nearly (v+%). When r/a is small, the solution
@,(0) reduces to J,(kr).

When r/a is not small, the asymptotic form of (19) is (r/asin @) J,(kr). Thus, the wave-
length at 7 is 27/k, the same as it would be on a ‘flat-earth’ at distance 7, but the amplitude
is increased because on the sphere the ‘perimeter’ is only 2nasin 6, rather than 27r.

The solution given above for @, is appropriate for constructing Fourier integrals which
represent a source which introduces volume into the atmosphere at ground level by a
singularity.

3. SOLUTIONS FOR THE VERTICAL VARIATION OF PRESSURE

Pekeris (1948) has solved equation (13) for the vertical variation of pressure in an
isothermal atmosphere. Pekeris (1948) and Scorer (1950) obtained solutions for an atmo-
sphere consisting of a troposphere having a constant lapse-rate and an isothermal strato-
sphere with continuity of temperature at the tropopause. This temperature structure we
refer to as model A. In the present paper, Scorer’s numerical results for this model A atmo-
sphere are corrected in some points and are generalized to several different temperatures.
A later section will treat an atmosphere consisting of two isothermal layers, referred to as
model B, and it is shown that most of the characteristics of model A may be represented in
this way, together with a number of new features associated with warm layers in the upper
atmosphere.

The form taken by equation (13) in the two regions of a model A atmosphere are now
derived.

Constant lapse-rate

Pekeris and Scorer represented the troposphere by a region in which the lapse-rate is a
constant which is somewhat less than the dry adiabatic lapse-rate. Let the unperturbed

temperature be given by Ty — —u(y—1) gz/yR, ‘ (21)

where 0 < < 1, and the origin of z is suitably chosen, so that substituting in equation (1)

BV ol7o = (1—4) 2, } (22)
7o/To = (1—24) [uz.]

By means of the transformation
y(2) = z74"(z+b) x(2), (23)
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282 J. N. HUNT, R. PALMER AND SIR WILLIAM PENNEY ON
Scorer reduced equation (13), using (22), to the form
X' (2) = 8(2) x(2), (24)

which is particularly suitable for numerical integration. Equation (24) has an explicit
solution only for ¢ = 0 when it is of the form

x~ 24, (p2),
where V2= 1+44P, P =y[y(1—2u)+2u]/4*(y—1)2
and 2 = (41— gl (kjo)?.

For any other value of 7, a numerical integration through the troposphere is required subject
to the boundary conditions discussed in the next section.

Constant temperature

If a region of the atmosphere is assumed to be isothermal at temperature 7 then
| rhfro = oo = — (y—1) glet,
where ¢Z = yRT,. Equation (13) then reduces to
@1(2) —{(2—7) g/} wi(2) +{o*— (y—1) &% %} (5 —k?0 %) w,(2) = O. (25)
The solution of (25) is

w, = Ce*+De’, (26)
where kA = (2—7v) g/2c2+ D, } (27)
D, = [{(2—7) g/262+-{(y—1) g%5?— 0%} (c;2 — K20 ?) %,

4. BOUNDARY CONDITIONS FOR FREE OSCILLATIONS

For free oscillations in a stratified atmosphere, we must impose continuity conditions at
each interface together with one boundary condition at the ground and a second for the
asymptotic behaviour of the motion in the upper stratosphere. In a non-dissipative model
of the atmosphere, a physically acceptable condition for this upper boundary condition is
that suggested by Meissner (1921) and used by others, including Pekeris (1937), namely,
that the total kinetic energy in a vertical column of air shall be finite for a physically
realizable periodic oscillation of the atmosphere. This must be the case if the oscillations
are to be generated by a source of finite energy. In an isothermal stratosphere

7o~ exp[—(y—1) gZ/CEJ,} (28)
po ~ exp [—7ygzcg],
and from the solution and (27) we find
u ~ exp [ygz/2¢2+D,z].
Thus the kinetic energy density varies as
pot? ~ exp (+2D,z). (29)

If the quantity under the square root sign of (27) is real and positive, then only the
negative sign is permissible in the exponents of (26). These are the oscillations which we use
in constructing Fourier integrals to represent the freely travelling gravity waves.


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ATMOSPHERIC WAVES CAUSED BY LARGE EXPLOSIONS 283

The oscillations which have a finite total energy, however, are not the only oscillations
with physical significance. If the quantity under the square root sign of (27) were real and
negative, then the kinetic energy per unit volume at great height would be bounded and
not tend to zero. The energyin any vertical column would be infinite. However, from oscilla-
tions of this type, one can construct upward travelling, dispersing pulses of finite energy
content. Taking rectangular co-ordinates (x,y,z), then for example there are periodic
oscillations in a completely isothermal atmosphere given by choices from the following

__cosot coskx ,, €08 fz
~ sin ot sin kx “sin g2’ (30)
where v=(2—7y)g/2:? [*=-—D.

Considering only harmonic oscillations with a finite energy in any vertical column, we
have a solution in the stratosphere
w,(z) = Derz.
We now join this to a solution of equations (23) and (24) for a troposphere having a
constant lapse-rate. At the tropopause, p and w must be continuous. Eliminating 7 between
(4) and (11) shows that continuity in w implies continuity in the quantity

@1/(8g70+0°7).
Together with continuity in @, this leads to the condition
Xe_m 1 MPg—(1—p)(y—1)g% (31)
x> 2z, 2(z,+0) o?ci—(y—1)g ’

where z = z, denotes the tropopause, and use has been made of the transformation (23).
At the ground, denoted by z = z,, we have

w=20
and again using (23) this gives the condition

Xy om 1
_m_ 1 32
X1 2z 2(z+90) (82)
With the equation for @,(z) in the form (24) and the boundary conditions (31) and (32),
Scorer carried out the numerical integration for (z) for a range of values of ¢. He verified
Pekeris’s conclusion that for each value of ¢ from zero up to a critical value ¢, there is only

one value of k, denoted by £*, for which y(z) satisfies both boundary conditions. For these
SOlutiOIlS (k*/O_)Q < ]./C‘%

and the cut-off frequency is defined by D, = 0.

This integration has been carried out again for the atmospheric conditions assumed by
Scorer, and also for a number of other values of ground temperature, height of tropopause
and lapse-rate. The solution for £ = k*(s) for these sets of conditions is shown in table 1.
It is particularly noticeable that an increase in ground temperature and lapse-rate reduces
the cut-off frequency ¢, and also reduces the group velocity at the cut-off. For mean Euro-
pean conditions chosen by Scorer, the period at the cut-off is approximately 2 min. For
mean Pacific conditions, the cut-off is about 2-5 min.

35 Vor. 252. A.


http://rsta.royalsocietypublishing.org/

PN

s |

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

284 J. N. HUNT, R. PALMER AND SIR WILLIAM PENNEY ON

TABLE 1. FREE-WAVE CHARACTERISTICS FOR TYPE A ATMOSPHERE (C.G.S. UNITS)

atmosphere ... I I1 II1
surface temperature (°C) 13-7 230 33:0
stratosphere temperature (°C) —43-7 —61-0 —173-0
height of tropopause (m) 9610 12800 15850
sound velocity at surface (m/s) 339-6 345-0 350-8
sound velocity in stratosphere (m/s) 3037 292-0 283-6
I IT I11
I - N — — 2 ~ % N
10%0? 105k* o 105dk*/do 10%k* o 105dk*/do 105k* o 105dk*/do
0 3-1895 3-1895 3:2100 3-2100 3:1947 3-1947
1 3-1905 3-1924 3-2131 3:2194 3-1989 3-2076
2 3-1915 3-1955 3-:2162 3-2290 3-2034 3:2228
3 3:1925 3-1985 3-2195 3:2391 3:2084 3-2401
4 3:1936 3:2020 3-2228 3-2498 3:2139 3-2597
5 3:1946 3-2053 3:2262 3:2612 3:2199 3-2825
6 3-1957 3-2089 3-2298 3:2733 3:2263 3-3086
7 3-1968 3-2123 3-2334 3-2868 3-2335 3-3381
8 3-1979 3-2161 3:2372 3-:3014 32413 3-3711
9 3-1990 3:2197 3-2414 3:3174 3-2497 3-4087
10 3:2002 3-2239 3:2458 3-3347 3-2589 3-4528
11 3-2014 3-2278 3-2504 3-3533 3-2691 3:5073
12 3-2027 2-2323 3:2551 3:3736 3-2806 3:5752
13 3-:2039 3-2364 3:2601 3:3961 3-2937 3-6536
14 3-:2052 3-2411 3-2655 3:4213 3-:3084 3-7424
15 3:2065 3-2455 3-2713 3-4496 3-3247 3-8396
16 3-:2078 3-2507 3:2774 3-4820 — —
17 3-2091 3-2555 3-2841 3-5192 — -
18 3:2105 3:2610 3:2912 3-5627 — -
19 3-2119 32661 3-2991 3-6152 — —
20 3-2134 3-2721 — — — —
21 3:2147 3:2777 — — —— -
22 3-2162 3-2842 — — — —
23 3-2179 3:2902 — — — —
24 3:2196 3:2973 —_ — — —
25 3-2208 3-:3038 — — —— -
26 3-2223 3-3116 — — — —
27 3-2241 3-3188 — — — —
28 3-2264 3:3273 — — — —
29 3:2295 3:3370 — — — —
30 e — . — — —

Note. An interesting numerical comparison is the value of the reciprocal of the group velocity, dk*/da,
and the reciprocal of the average of the sound speed at the surface and at the tropopause. This average is
3-1090 for atmosphere I, 3-1396 for atmosphere II and 3-1526 for atmosphere III, all times 10=5 s/cm.

5. AN ATMOSPHERE CONSISTING OF TWO ISOTHERMAL LAYERS

In order to simplify the numerical calculations associated with the model A atmosphere
used by Pekeris and Scorer, it was thought that many essential features of the problem
would become more evident if the model were replaced by another containing two iso-
thermal layers—model B. This appears to be the case, for if the constant-lapse-rate tropo-
sphere is replaced by an isothermal layer whose temperature is that obtaining midway
between the ground and the tropopause, then the free-wave characteristics £ = £*(0) are
found to be very similar to those of model A. Table 2 shows the results obtained in this way,
and no doubt the agreement could be improved further by optimizing the temperature in
the lower layer instead of simply taking the mean value.
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We consider a stratosphere at temperature 7, above a troposphere at temperature 7.
In the stratosphere

w, = Del?, v (33)
where Ay = (2—7) g/2¢2—D,. (34)
In the troposphere w, = E(—A,e? 4, eM?), (35)
where ’ Kp Ay = (2—7) g/2¢2+ D, (36)

The upper sign in (36) refers to «, and the lower to 4,. It will be seen that (35) automatically
satisfies the condition at the ground z, = 0. As before, we require continuity at the tropo-

pause in w, and @/(gry+o?7,).

TABLE 2. FREE-WAVE CHARACTERISTICS FOR A TYPE B ATMOSPHERE
SIMULATING A SCORER TYPE A ATMOSPHERE (I OF TABLE 1)

troposphere temperature (°C) —15-0
stratosphere temperature (°C) —43-7
height of tropopause (m) 9610
10%o? 105k* /o 103dk*/do 10%0? 105k* /o 105dk*/do
0 3:2007 3-2007 16 3:2146 3-2479
2 32022 3:2052 18 3:2167 32586
4 3-2038 3:2101 20 3-:2190 3:2655
6 3-2054 3:2152 22 3-2214 3-2751
8 3-:2070 3-:2008 24 3-2239 3-2863
10 3-2088 3-2068 26 3-2266 3-2985
12 3-2106 3-2332 28 3:2295 3-3123
14 3:2126 3-2400 30 3-2325 3:3273

Eliminating the ratio D/E from the resulting two equations, we have after some simplifica-
ton  (1—c2k2/o?) {D,coth (D,z,) — (2—7) &/2¢3}

+ (L= R2[0%) K exp{(y —1) gz,(6; > —¢7%)} = 0, (37)
where Kk, = (2—y) g/2¢2+ D,. (38)
Equation (37) determines £ = £k* (o) for assigned values of 7, and 7, or ¢Z and ¢?. Itillustrates
one of the important features of the problem; there are in fact two distinct cases to be con-
sidered.

When T, < T, we have a cold layer above a warm layer. This model closely represents
Scorer’s model A atmosphere. The radical D, becomes imaginary for sufficiently large
values of ¢, and a cut-off is reached because (k*/0)? < 1/¢2. Up to this value, D, remains
real, D,coth (D,z,) is single valued, and only one root for £ = £*(¢) is found. This corre-
sponds closely to Scorer’s solution as may be seen by comparing table 2 with atmosphere
of table 1. '

The limiting case of the isothermal atmosphere T, = T; is interesting. There is no point
in distinguishing between the stratosphere and the troposphere; and the function w,, at
all heights, is given by (33). The condition that the vertical velocity is zero at the ground
usually requires @] to be zero at the ground, i.e. A = 0 at the ground. There are two values
of o which make A, as given by (84), zero, namely

o=k and o?=(y—1)g?c.
The first root genuinely makes w zero at the ground, and also implies that the vertical
velocity is always zero at all heights.

35-2
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The second root makes @ zero at the ground, but it does not make w zero at the ground.
Referring to equation (18), it will be seen that the condition @ is zero at the ground makes
(0%1,+g7) w zero at the ground ; and the second root above has only expressed the fact that
there is a value of ¢ which makes (027, g7;) zero for an isothermal atmosphere.

Pekeris (1948), working in terms of the divergence of velocity rather than our function
w,(z), obtained a second mode of oscillation for an isothermal atmosphere for which
0% = gk. This solution is fictitious since it makes a multiplicant of w,, and not w, itself| zero.

T T
1-0— n=0 —
0-9— -

5

RS

5

___________________ Lcutoff . ___
/,,
II
07H .
L |
0 200 400

104 g2

Ficure 2. The free oscillations of a simple two-layer atmosphere consisting of a warm isothermal
layer above 40 km at temperature 320°K and a cooler isothermal layer below 40 km at tem-
perature 250 °K.

An isothermal atmosphere can carry a ‘freely travelling’ pulse in which the vertical
velocity is everywhere zero. The harmonic components are non-dispersive and the pulse
travels like a sound pulse in two dimensions. This type of pulse, however, is ‘non-physical’.
The wave front is vertical and extends to infinite height and the total kinetic energy is
infinite.

When T > T, we have a warm layer above a cold layer, and this situation represents
some of the properties of the real atmosphere which are due to the warm layers which exist
in the upper stratosphere (see figure 1). In this case, we find that for large o2

1/c? > (k*[0)? > 1/c2,

so that £* remains real however large the value of ¢. However, for sufficiently large o,
D, is imaginary while D,coth (D,z,) remains real and many valued. It follows that there
is no high-frequency cut-off, and that for large o, there are several roots £*(¢) satisfying the
boundary conditions. If we draw a graph of (k*/r)? against ¢2 for the various branches of
the solution as in figure 2, it can be seen that for sufficiently large values of ¢2, the roots all
lie within this range, and that all branches except the first have a low-frequency cut-off.
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The physical significance of the different branches of the solution lies in the number of
nodes in the velocity and pressure perturbations in the ‘troposphere’. Along the first
branch, the radical in (36) is real and the solution for @, consists of two exponentials in z,
and therefore has no nodes in this lower layer of the atmosphere. Along the remaining
branches, this radical is imaginary and @, is an oscillatory function of z.

For any given ¢, there are only a limited number of modes of oscillation, but the number
of modes increases indefinitely with ¢. Figure 3 shows the variation of the modified pressure
amplitude with height for the first four possible modes of oscillation when ¢? = 0-03,
showing how in each mode the solution joins on at the ‘ tropopause’ to a decreasing exponen-
tial solution in the ‘stratosphere’. Table 3 gives a few illustrative values of the free-wave
characteristics for the first four branches.

80— 1 l T l

60

40¢¢

20

0

-3 -2 -1 0 1 2 3

Ficure 3. The modified pressure, on an arbitrary scale, as a function of height for the first four
branches of the model atmosphere used in figure 2, for the case where o = 0-173, i.e. period
27/o = 363 5.

One can obtain an asymptotic solution of (37) for large ¢ for the branch with n vertical
nodes, provided # is not too small.

By writing k202 = 1/ —a2/o? (39)
and using the fact that coth (D),z,) has zeros at approximately (2n-+ 1) in/2, it follows that
a, = (2n+1) m/2z,. (40)

Thus, for example, with z, = 40km, and for harmonic oscillations of period 10s, the
oscillation with ten nodes on any vertical line has a £/o value which is about 8 %, less than
that of the oscillation which has no node on a vertical line.

These results conflict with a conjecture made by Pekeris (1948) that all stratified atmo-
spheres having a temperature minimum would exhibit a high-frequency cut-off. The
condition that there is a high-frequency cut-off, it would seem to us, is that there is no
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sound channel, i.e. that at no height in the atmosphere does the temperature increase in the
upwards direction. If there is a temperature minimum, then there is a sound channel, and
high-frequency freely travelling waves are possible. However, in this case, oscillations with
nodes on one or more horizontal planes will have low-frequency cut-offs, and even the mode

TABLE 3. FREE-WAVE CHARACTERISTICS ALONG BRANCHES
OF A TYPE B ATMOSPHERE (C.G.S. UNITS)

temperature —23 °C from ground level to 40 km; temperature 47 °C above 40 km

] 10402 10%k* /o 10°dk*/do 10402 10°k* o 105dk*/do
<, branch n = 0 branch n=1 (cont.)
- 0 3-0729 3:0729 48 2-8545 3:3259
< 2 3-1056 3-1296 50 2-8641 3:3271
> >~ 4 3-1156 3-1452 60 2-9042 3-3194
@) = 6 3-1219 3-1486 70 2-9347 3:3074
e E 8 3-1258 3-1511 80 2-9584 3-2952
O 10 3-1286 3-1526 90 2-9773 3:2685
o 12 3-1308 3-1536 100 2-9928 3-2732
e, 14 3-1326 3-1543 110 3-:0057 3-2653
= 16 3-1340 3-1547 120 3-0166 3-1578
=2 18 3-1352 3:1550 140 3-0341 3-2461
0% 20 3-1362 3-1552 160 3:0475 3:2360
EQ 22 3-1371 3-1554 180 3:0581 3-2279
ﬂ-b I 24 3-1379 3:1555 200 3-0666 3-2190
8< ©) 26 3-1386 3-1556 220 3-:0736 3-2146
0‘2 28 3-1392 3-1556 240 3-:0796 3-2105
:'§ 30 3-1398 3-1556
= 82 31403 31656 branch n = 2
50 3.1434 31556 260 2-9591 3-3084
.\ o i R s sew
o 110 31471 3-1543 230 50529 5.3373
o 120 padne o152 600 3-0635 3.2307
— 140 3-1480 3-1540 030 50700 53930
< 160 3-1484 3-1539 99
> > 180 31487 31538 700 om0 S oTas
oF 200 1289 31631 33(5)8 3:8846 3-2147
= 220 3-1492 3-1536 .
@) 240 3-1494 3-1536
T o branch n =3
B branch n=1 2563 27822 2:8219
29-39 2-7505 2-8975 257-0 2-7823 2-9471
<2 30 27519 2-9403 260 2-7836 3-1450
o4e) 32 2-7605 3-1000 270 2-7915 3-:3069
I= 34 2-7723 3-1986 280 2-8008 3-3384
SU L 36 2-7850 3-2530 300 2-8202 3-:3780
aZ o 38 27977 32887 600 29759 33097
9 Z 40 2-8103 3-3027 650 2-9887 3-2989
—é 42 2-8223 3-3129 700 2-9998 3-2896
E E 44 2-8336 3-3202 750 3-0095 3-2813

46 2-8444 3-3246 800 3-0180 3-2737
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n = 0 may have a low-frequency cut-off greater than zero (for example, compare the first
entry in table 5 with the first entry in table 6).

Another feature worthy of comment in the results shown in table 3 is that d4*/de has
a maximum in each branch, and for the higher branches this maximum moves towards the
low-frequency cut-off. The significance of the result is that for each branch there is a
o value for which the group velocity is least. Formulae (39) and (40) do not give a minimum
group velocity but are nevertheless useful in some of the discussions given later in the paper.

TaBLE 4. LOW-FREQUENCY CUT-OFFS FOR THE TYPE B ATMOSPHERE
OF TABLE 3 (FIRST FOUR BRANCHES ONLY)

10402 105 (k* /o), 105 (dk*/do),
branch n.=0 0 3-0729 3-0729
branch n=1 29-39 27505 2-8975
branch 7 =2 1145 27775 2-8302
branch 7= 3 2563 27822 2:8219

6. THREE-LAYER MODEL WITH SOUND CHANNEL

The two-layer model considered in the preceding section is satisfactory in the sense that
the lower layer is a sound channel. However, it was thought that a three-layer model would
be a better approximation to the real atmosphere. A still better approximation would be
a five-layer model, with two sound channels; but, in principle, the five-layer model will
contain nothing new.

The three-layer model which we choose has an isothermal troposphere at temperature
T, extending from the ground to a height z,. The lower isothermal layer of the stratosphere
has a temperature 7}, and extends from height z, up to height z;. The upper layer has a
temperature 7, and extends from height z, to infinite height. In order to represent the real
atmosphere as closely as possible, the temperatures are chosen such that

T,>T,>T,

Two cases were evaluated numerically, the temperatures being the same, but the depths
of the layers were varied. We take

T,=47°C, T,=-—44°C, T,=-15°C, (41)

and in the first case we take z, = 10km, z;=40km (42)
and in the second case we take

zy = 15km, z3=30km. (43)

In the troposphere w, = E(—Aex?+k, eM?), (44)

where «, and A, are given by (36), the upper positive sign referring to «, and the lower nega-
tive sign to A,. The form of (44) automatically satisfies the condition of zero vertical velocity
at the ground z; = 0. In the lower stratosphere

@, = Fessz+ G el (45)

where «, and A, are similar to «, and A, except that ¢, replaces .
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In the upper stratosphere o, — Helw, (46)

where A, is similar to A, or 4, except that the velocity of sound is ¢, rather than ¢, or ¢,

L.f. cut-off
'

Lf.cut-off

l |
100 300 500

<

109202

(®)

Lfcut-of f

| | |
100 300 500
10% o2
Ficure 4. The free oscillations of three-layer atmospheres consisting of an uppermost layer at
temperature 320°K, a middle layer at temperature 229°K and a bottom layer at temperature
258°K. In (a) the interfaces are at heights 10 and 40 km and in (b) they are at heights 15

and 30 km.

Only the negative exponential appears in (46) because of the condition that the oscilla-
tions must have a finite total energy in any vertical column.
We require continuity at z = z, and at z = z; in both

w, and @)/(gry+o?7,).
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Eliminating the ratios £/H, F/H and G/H from the four continuity equations we obtain
the equation

A Ak AB+ CA ko +{(2—7) g/2¢3} (A, AC — Ak, B)
—D,(A,AC+A,k,B) coth {D,(z5—2,)} = 0, (47)

where 4 = {ci[(y—1) g —cto*][c}[(y— 1) g —cio*]}exp{(1—7) g25(cs 2 — ¢ %)}
B = {c{[(y—1) g —cio®] e[ (y—1) g — i o*]} exp{(1 —7) gz5(c 2 — 7 %)}, (48)
C = D,coth (D,z,) — (2—7y) g/2¢2.
Equation (47) can be solved numerically to give £* and dk*/de as functions of ¢. The larger
the value of ¢, the more branches there are. The various branches have a different number

of zeros of w,(z), the first branch having no nodes (except z = o0), the second branch having
one node (and another at z = o0), and so on.

(%23
>

[N
(=]

b
[~

-5 01 5 10 15 -5 01 5

Ficure 5. The modified pressure, on an arbitrary scale, as a function of height for the first five
branches of the atmosphere used in figure 3(a) for the case where o =0-2, i.e. period
2m|o = 31-4s. Figure 5(a) gives branches n =0, 1, 2 and (b) branches n = 3, 4.

Figure 4 shows a plot of (£*/¢)? against ¢2 for the first few branches for the two cases (42)
and (43) which we studied numerically, using the I.B.M.704 machine. Table 5 gives
detailed values for a number of values of ¢2 in case (42) and table 6 gives values in case (43).
The point might be noted that in case (42) all branches, including the first, have a low-
frequency cut-off. The first branch has a low-frequency cut-off at ¢2 = 3 X 107%. In case
(43), all branches except the first have a low-frequency cut-off, but the first branch extends
over the complete range ¢ = 0 to ¢ = 00.

An asymptotic solution for large ¢ in the nth branch, the first branch being called » = 0,

is obtained by writing R2[o? = 1/e2—a2/o (49)
and approximating to the zeros of the function coth {D,(z;—z,)}. It is found that
o, = (2n+1) 7/2(25—2,). (50)

36 Vor. 252. A.
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TABLE 5. FREE-WAVE CHARACTERISTICS FOR THE FIRST FIVE BRANCHES OF A THREE-LAYER
ATMOSPHERE CORRESPONDING TO (41) AND (42) (C.G.S. UNITS)

10¢ 02 105k* /o 105dk*/do 1042 10°k* o 10°dk*/do
branch n=0 branch n =2
0-31 3-1159 3-1609 92-58 27771 2-8846
1 3-1438 31803 94 27793 3:0260
2 3:1555 3-1864 96 27840 31171
4 3-1655 3:1924 98 2-7896 31660
6 3-1708 3:1945 100 2:7956 3:1969
8 3-1743 3-1964 105 2-8113 3-2399
10 3-1769 3-1980 110 2-8268 3:2624
15 3-1818 3:2015 115 2-8416 3-2751
20 3-1853 3-2049 120 2-8557 3-2832
30 3-1909 32117 130 2-8813 3:2915
40 3-1957 3:2188 140 29037 3:2950
50 3:2000 3:2259 150 29234 3:2961
60 3-2041 32330 200 2-9927 3-2911
80 3-2116 32462 250 3:0332 3-2847
100 3:2183 32574 300 30591 3-2752
150 3-2319 32764 350 3:0773 32834
200 32417 32864 400 3:0912 32894
250 32489 3:2917 500 31131 3:3074
300 32543 3-2946 600 3-1314 3:3237
400 32619 3-2973 800 3-1608 3-3368
500 3-2668 32982 1000 3-1821 3:3377
600 32704 32985 2000 32317 3:3264
800 3-2750 3:2984 4000 2-2599 3-3138
1000 3:2780 3-2980 6000 3:2699 3-3080
2000 3:2844 3:2962 8000 32751 3:3047
4000 3-2879 3:2945 10000 32783 3:3025
6000 3-2891 3-2938
8000 . 32897 3:2933 branch n =3
10000 3:2901 3:2931 201-24 2.7829 2.8899
202 27834 2:9413
branch n =1 204 2-7853 3-0229
25-80 27462 2-9004 206 2-7878 30676
26 2:7470 2:9550 208 2:7907 3:0952
28 2-7618 32332 210 27937 31153
30 27816 3-3348 215 2-8015 31474
35 2-8310 3:4082 220 2-8096 3-1676
40 2-8731 34171 225 2-8176 3-1811
45 2-9073 3-4098 230 2-8256 3:1913
50 2-9356 3-3989 240 2-8410 3-2052
60 2-9785 3:3768 250 2-8556 32144
80 30329 3:3425 260 2-8692 32208
100 3-:0654 3:-3199 280 2-8940 3-2290
150 3:1096 - 3-2931 300 2-9158 3:2336
200 3:1341 32880 350 2:9595 3-2370
250 3:1516 3:2914 400 2-9917 3-2346
300 3-1657 32969 500 3-0344 3:2249
400 3-1874 3-3059 600 3:05697 3:2216
500 3-2032 3:3106 800 3-0883 3:2547
600 3-2150 3:3126 1000 3:1094 3-3180
800 3-2311 3:3134 2000 3-1859 3-3535
1000 3-2416 3:3126 4000 32353 3-3311
2000 3:2646 3-3073 6000 32531 3:3207
4000 32774 3:3017 8000 3-2623 3-3147
6000 32819 3-2991 10000 3:2679 3-3108
8000 32842 3:2976
10000 32857 3-2966
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TABLE 5 (cont.)

10%0? 103k* /o 10°dk* [do 10 g2 105%* /o 105dk*/do
branch n =4 branch n=4 (cont.)
356-94 2-7850 2-9118 460 2-8753 3-2836
358 2-7854 2-9822 480 2-8902 3-2871
360 2-7866 3-:0556 500 2-9039 3-2891
365 2-7905 3-1372 600 2-9594 3-2891
370 2-7949 3-1767 700 2-9990 3-2747
375 2-7996 3-:2005 800 3-:0276 3:2526
380 2-8044 3:2170 900 3-0483 3:2246
385 2-8093 3:2292 1000 3-0629 3-1992
390 2-8141 3-2387 2000 3-1294 3-3747
400 2-8237 3:2524 3000 3:1759 3-:3680
410 2-8331 3:2617 4000 3-2038 3:3537
420 2-8421 3-2688 6000 3:2315 3-3372
440 2-8593 3-2779 8000 3:2458 3-3278
10000 3-2546 3-3217

7. PRESSURE OSCILLATIONS DUE TO A SOURCE AT GROUND LEVEL

In this section, we shall obtain a formula for the pressure oscillations at ground level caused
by the introduction of a certain volume of air into the atmosphere at ground level. We shall
then calculate numerical values at various distances for two-layer model atmospheres, of
the type used by Scorer (1950), taking the effect of an explosion of £ calories as equivalent
to introducing about 8 cm? of air into the atmosphere. From these numerical values, and
using published microbarograms of the Siberian meteorite and of certain nuclear explosions,
we obtain approximate values for the size of the explosions. The reliability is not good for
several reasons. First, it is not clear which model atmosphere approximates best to the
atmosphere existing at the time of the explosion, or what corrections must be made for
winds. Second, the model atmospheres have a cut-off frequency which is low, and therefore
only comparatively long waves are emitted. Third, and this is perhaps the most important
point, the theory predicts that the amplitudes of the waves are linearly proportional to the
energy of the explosion, and the periods are independent of the size of the explosion. The
theory disagrees with observations on both the second and third points.

Pekeris and Scorer have constructed Fourier integrals, using the fundamental solutions
corresponding with the oscillations of the two-layer model atmosphere with a cold strato-
sphere, to represent the freely travelling pulse caused by a source which has a singularity
in the vertical velocity at ground level at time zero. We found it difficult to understand
the physical significance of their integrals and we hope that the following discussion will
help to clarify the situation.

The system of co-ordinates which we have adopted, and which are convenient for treating
the freely travelling waves, are not those which would naturally be used for calculating the
sound pulse sent out by a source on a plane which is the boundary of an isotropic atmo-
sphere filling all space on one side of the plane. If this plane is regarded as ‘horizontal’ one
would naturally use spherical polar co-ordinates with the origin at the source in the plane;
the polar axis being ‘vertical’. A source which was introducing air by a singularity
in the vertical velocity at the origin would also be introducing air by a horizontal
singularity at the origin, and the source would be uniform though a hemisphere of small
radius.

36-2
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TABLE 6. FREE-WAVE CHARACTERISTICS FOR THE FIRST FOUR BRANCHES OF A THREE-LAYER
ATMOSPHERE CORRESPONDING TO (41) AND (43) (C.G.S. UNITS)

10¢ 02 10%k* /o 103dk*[do 10¢ o2 103k* /o 105dk*/do
branch n =0 branch n=1 (cont.)
0 3:0540 3:0540 4000 3:2414 3:3128
2 3-0814 3:-1144 6000 3:2564 3:3098
4 3:0938 3:1313 8000 3:2644 3:3073
6 3-1014 3:1390 10000 3:2694 3:3054
8 3:1067 3-1435
4 10 3-1108 3:1466 branch n =2
< 15 3-1178 3-1509 177-40 2-7822 2-7994
o 20 3-1226 3-1536 178 2.7825 2.8024
< 30 3-1291 3-1570 180 2.7837 2.8112
- P 40 3-1337 3-1597 185 2.7884 2.8289
O — 50 3:1374 3:1621 190 27943 2.8439
23] 60 3-1408 3-1646 195 2.8008 2.8574
e — 80 3:1468 3-1700 200 2.8075 2.8698
Q) 100 3-1525 3-1759 210 2.8211 2.8924
I o 150 3:1663 3:1929 290 2.8344 2.9124
~ 200 3-1791 3-2103 230 28472 2.9303
250 3:1903 3:2257 240 28593 2.9466
2”2 300 3-1998 3-2383 260 2.8817 2.9750
Yo 400 3:2145 3:2564 280 2.9016 2.0988
I= 500 3-2251 3-2679 300 2.9194 3.0191
60 600 3-2330 3-2756 350 29561 3.0581
0 . .
2 800 3-2440 3-2847 400 29846 3.0851
9 Z 1000 3:2514 3:2896 450 3-0073 3-1032
—§ 2000 3:2685 3-2965 500 3.0255 3.1142
75
o= 3000 3:2752 3:2973 600 3-0523 3.1652
4000 3-2788 32971 800 3.0798 3.2104
6000 3-2827 3:2964 1000 3.0896 3.2373
8000 3-2848 3-2957 2000 3-1207 3-3117
10000 3-2860 3:2952 3000 31507 3.3413
4000 3:1801 3:3404
branch n=1 6000 3:2128 3:3333
44-80 27651 2.8201 8000 3:2306 3:3273
46 27674 2.8316 10000 3:2417 3-3228
48 2:7738 2:8423
50 2-7818 2-8493 branch 7 =3
55 2:8043 2-8636 414-92 2:7853 2:8165
60 28270 2-8781 416 27856 2-8277
65 2:8482 2:8931 418 2-7863 2:8416
o 70 2-8678 2-9081 420 2-7871 2-8511
s 80 2:9011 2-9367 425 2-7896 2:8659
— - 90 2:9284 2:9621 430 2:7924 2:8755
< 100 2-9507 2:9842 435 2:7955 2-8826
> > 120 2-9847 3:0196 440 2:7986 2:8885
@) = 140 3-0088 3:0457 450 2:8050 2-8981
& = 160 3:0264 3:0651 460 2:8115 2:9063
— 180 3:0396 3:0798 480 2:8243 2:9207
=0 200 3-0498 3-0911 500 2:8365 2:9336
n @) 250 3:0669 3:-1106 600 2:8726 2:9801
=w 300 3:0773 3-1236 800 2:9161 3:0436
—n 400 3-0896 3-1441 1000 2:9462 3:0885
5 p 500 3:0976 3:1665 2000 3-0295 3:2392
EQ 600 3:1050 3:1965 3000 3:0723 3:3110
ke 800 3-1231 3:2609 4000 3:1048 3:3488
02 8 1000 3:1432 3:2886 6000 3-1531 3:3647
8(1) 2000 3:2023 3:3120 8000 3:1836 3-3558
= Z 3000 3:2275 3:3138 10000 3:2031 3:3477
T
-y ]
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Before we attempt to construct Fourier integrals to represent the disturbance caused by
a point source at ground level in model atmospheres (gravity present), it will be illuminating
to consider the simpler problem of an isotropic semi-infinite atmosphere with no gravity
present. The object here is to ensure that the spherical waves which are known to be the
solution are in fact properly represented by Fourier integrals in the system of co-ordinates
which we have chosen.

When there is no gravity, we have as one choice of fundamental solutions

@ = 10 sin gt Jy(kr) (sinfz) /P
w = cos gt J(kr) cos fiz, (51)
u = kcos at Jy(kr) (sinfz) /B,
f? = o2)c2— k2
When £ > g/c, cosfz is replaced by e /2 and sinfz by —e /12, where f} = k?—0?/c?
and f, > 0. The parameter 7, is the reduced temperature given by (1), i.e. 7y = 1/Tj,

where 7 is the temperature of the isotropic atmosphere being considered.
Fourier integrals representing a singularity at the origin are

w = Br, f “do f " Ak Zoksin otJ,(kr) (sin f2) B,
0 0

=B f “do f " AkZK? cos ot (kr) (sin f2) Jf, (52)
0 0

w—B f “do f " Ak Sk cos ot o(kr) cos Bz,
0 0

where B is a constant which will be determined by the volume which the source introduces
into the atmosphere. The function 2 is an arbitrary function of o which, as we shall show,
determines the time variation of the source.

Consider the expression for . Replace J(kr) by its asymptotic form for large k7, express
all trigonometrical functions in their exponential forms, take the products and convert
back again to get travelling waves. Then

@ = — B{1,/2(2m)}) f :do f :dkaz’(k%/ﬂ) sin (ot —kr—fz—m). (53)

In this expression, we have omitted all of the terms except that which has the com-
bination (¢¢—kr—pfz—im) for the reason that the argument now to be developed shows
that these other terms make zero contribution to the integral.

From the principle of stationary phase, the rapid oscillations of the integral give can-
cellation except from a small region of the positive (¢, k) quadrant such that (¢¢—kr—fz)
is stationary. Consequently, @ at (r, z, {) comes from the neighbourhood of ¢ and & values

such that t = z3p|do = zo/c?B,

r=—zdf|ok = zk|p. (54)

The exponential terms neglected in (53) never have a stationary phase in the positive
(0, k) quadrant, and therefore cancel to zero.
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From (54), it follows that

rlz =k|f, k=«ksinf, p =«kcosb,
K2 = f2+k2 = g2/c2.

Writing r= Rsinf, z= Rcosl, R?=r>+422
we have R = ct.

Expanding the phase in the neighbourhood of its stationary value, we have

ot—kr—pfz = o(t—R/c) — $z{(9%6/00?) do%+ .. .} + ...
= g(t—R/c) + (zk*|2c%8%) {0(a k) }*+-....

We now change from the independent variables (7, k) to the independent variables
(a0, 0/k), the Jacobian being —o/k?. Then

o = —Blry2(2m) [ "do [ (K[p) Esin {o(t—Rje) —kr+e247} dg,

where a? = zk*/2c%f8.

Splitting the last factor into two components, and using standard formulae for the ¢

integration, we obtain "
@ = — (Bry/2R) f oZsino(t—RJc) do. (55)
0

In the theory of sound in an infinite isotropic medium, suppose that there is a point source
which is introducing volume at a rate 2Vf{¢), wheref f(t) dt = 1. Then the spherical sound
0
wave being emitted has a pressure disturbance

3 — (s, V/2nR) f'(t—Rfc).
Compare this with the pressure disturbance given by (55),

5 — — (Bpy/2R) f "o Zsino(t—RJc) do.
0
The two expressions are the same provided that 2 is normalized such that
J-wdt Jchos otdo =1 (56)
o Jo

in which case B=7V|n.

The source which is introducing volume at the rate 2Vf(#) into the full space gives the
same pressure disturbance as a source which is introducing a volume V/f{#) at a point on
a plane with the medium only on one side, i.e. into the half space.

Thus, the expressions (52) do correctly give the hemispherical sound wave caused by a
point source on the boundary plane of a semi-infinite isotropic atmosphere; and if the total
volume introduced by the source is V the value of Bis V/m. The function X must be normal-
ized according to (56).

Suppose that at a certain distance Z from the ‘ground’ plane where the source operates,
there is a change from one isotropic medium to another—for example, a discontinuous
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change of temperature. The pulse sent out by the source is reflected and refracted at the
interface; and in due time there will be secondary and higher reflexions and refractions.
If we constructed Fourier integrals to represent the pulse, we would extend (52) in the
region 1 by adding to cosfz in the expression for w, terms such as

A{cos f(2Z —z) —cos f(2Z+z)}.

The continuity conditions on w and @ at the interface would determine the coefficients 4, ....
The solution is no doubt the same as that obtained by using the theory of sound and the
method of images; but the amplitudes variations along the wave fronts are not easily
calculated by either method.

We shall now consider model atmospheres with gravity present.

We have as fundamental solutions

w = cos gty (kr) 0w,(z) |0z, }

w = {(0%1,+grg) [0} sin atJ ,(kr) w,(2). (57)

The functions @,(z) conform to the equations of motion and of continuity, and to the
continuity conditions at the interfaces between layers; but the condition that the vertical
velocity at the ground is zero is not necessarily obeyed. The functions @, (z) are defined over
the whole of the positive (¢,k) quadrant. They include as special cases the solutions repre-
senting the modes which are confined to the lower layers and which are the modes which
give the freely travelling gravity waves.

Generalizing these solutions, we take

w= (V)| “do | kZk cos ot (k) w4 (2)/ 1 (21,

o = (V/n) f :dcr f :dk{(0210+ g10) 0 Zksin ot (kr) @,(2) [)(2,), (58)

where z, is the value of z at ground level and V'is the volume introduced by the singularity.

The function X is normalized according to (56). Analytical forms of X convenient for
our purpose are

Y= (2[m)e T, f(t)=2T[n(T?+), (59a)

X=(2/m)(1—0cT)e T, f(t)=4Tn(T?+)?, (590)

It might be helpful here to make a brief digression on the source function X to represent
an explosive source. The case of (595) is a reasonable approximation; a better approxima-
tion is to take the pressure-time curve from an explosion in ‘free air’, and actually calculate
numerically the function X which represents it.

Suppose that for an explosion in ‘free air’ the pressure disturbance p, atradius 7 and time ¢,
measured from the arrival of the blast, is (7, £). The radius » must be taken sufficiently large
for the blast wave to be of small intensity, in order that the theory of sound will apply to the
subsequent motion. Then the volume V introduced into the air, to give the same pulse at

distances greater than r is noopm
V= (anripo) [ "ae [ prt)
0 0

where 7, is the time duration of the blast wave at 7.
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Taking some observed blast waves, and making the double integration, we find that the
volume V'is 5 to 8 cm? per calorie of explosive energy, as described in the Introduction.

Figure 6 shows the functions f(#) and 2'as given by (595) ; and for comparison the source
functions calculated from the experimental results on the blast from explosions. The time
T has been taken as equal to one-quarter of the blast duration 7,.

The problem now is to perform the integrations over the positive (¢, £) quadrant in the
formula for =.

1-0 l I l

0-4L N =

08 z —
0.6— -
0.4__ —]

02— |

0 R | 2 3
~0-2 Il

Ficure 6. The source function f(¢) and its transform X as given by (595) compared with similar
functions computed from blast waves caused by explosions. I refers to (594) and II to blast
waves. The time 7 has been taken as one-quarter of the blast duration 7,. The units of f are 1/,

and of X are 2/m, in order to normalizej S(t) dt to unity.
0

The functions @,(z) will be oscillatory in some regions of the quadrant. By the same
procedure as was used for the isotropic atmosphere, the contribution to the pulse will come
from a synthesis of waves of the type e’? ei@*~#-£2) and the method of stationary phase shows
that the pulse at (7, z, t) will come entirely from ¢ and £ values in the neighbourhood of ¢

and £ values satisfying t = 20B)ds, r——z0p0k. (60)

Even in the case of model atmospheres with a high-frequency cut-off, there is still a
pressure disturbance at ground level due to (o, £) values which represent the ‘direct beam’,
travelling horizontally at ground level. The ‘direct beam’ is the integral of waves whose
zfactoris the limiting case of €”# (sin fz) /f when £ tends to zero. There are also ‘direct beams’
from the images of the source in the interfaces, and their images. We have not attempted
to calculate these parts of the pulse; but as far as comparison with actual measurements of
the waves caused by an explosion is concerned, we may ignore them because wind gradients
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and temperature gradients near the ground will scatter the beams into ‘noise’. The freely
travelling waves are much less affected by local perturbations because the whole depth of
the atmosphere is partaking in the motion.

In the case of the freely travelling waves, the function @}(z,) is zero, because the vertical
velocity is zero at ground level z,. There is a curve in the (o, k) positive quadrant, £ = £* (o),
or a series of such curves, along which the integrand for @ has a singularity.

We have for @ at ground level, denoted by @, the real part of the expression

n1= {V/ﬂ(2ﬂr)%} f:dcrf:dk{(ﬂrm +g761)/0} Zk%{wl<zl)/wi(zl)} el@t=kr=4m,

Waves which have no stationary phase have been omitted.

The k-integration can be performed by the method of residues. Define a contour in the
complex £ plane consisting of the positive real axis, the negative imaginary axis, and a
curve I joining the two ends of the axes at infinity. The only singularity is on the real axis
at k£ = k*. For large 7 |k|, the integral along I'is zero, owing to the rapid oscillations and
the negative exponential. Along the imaginary axis, there is a contribution near the origin
but this tends to zero, provided |£| is small but 7 |£| is large. Thus, asymptotically for large
r we have that the contour integral, starting from the origin along the real axis, is —i
times the residue at £*.

Expressing @, in terms of the pressure disturbance p, at ground level, we have

b1 = Po1®1[Tors

p1 = oo Vi(2m)¥} [ doZE(0) (k¥ er-retn, (61)

where F(o) = —{(0%71+g701) [0701}/{0[@1(21) /@1 (21) ] /0K } e - (62)

Values of F(¢) for the three atmospheres defined in table 1 are given in table 7.

For the model atmospheres where the uppermost layer is warmer than the lower layers,
the pressure disturbance p, is the sum over all branches, and the functions F,(¢) must be
evaluated for each branch. The range of integration for any branch is from the low-frequency
cut-off to infinity.

The special case where the excitation function X' is a constant is obtained from (61) by
making 7" very small, and X' = 2/7. In this case

{pOI V/ﬂ %}J‘ dO’Fk’} eilot~k r+i7r) (63)

where the real part is required, and for simplicity, the asterisk on £ has been dropped it
being understood that £ is a function of .

At sufficiently large values of 7, the exponential in the integral oscillates rapidly and the
integration can be made by the method of stationary phase. First we define a value of 7,
denoted by ¢, for which precisely '
¢t = r(dk/do),. (64)

Then for these precise values of r and ¢, we take neighbouring values o = ¢y+-do, in

which case g a0 Lok k) 4 dm— bk (00)2 — BRI (80)3 4 ... (65)

37 Vor. 252. A.
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We now replace ¢ by ¢, in the slowly varying functions of the integral, and take these
functions outside the integral sign. Moreover, we neglect the (d0)3, (00)4, ... terms. Since
r is going to be taken as large, we make the modification which allows for the curvature of
the earth, as explained in the discussion of (19). Thus for &5 > 0

b1 = (2po1 VIm) (1[rasin0)} F(ay) (ko/kg)* cos {r(sokt—ko)}- (66)
The validity of neglecting the (6¢)3 term requires that r£”/(rk")# should be small compared
with unity. Similarly, the neglecting of (d¢)* term requires that 7£"/(rk")? should be small

TABLE 7. RELATIVE INTENSITY FUNCTIONS (SEC™!) FOR TYPE A ATMOSPHERES
I, 11, III oF TABLE 1

102 F (o)
10t02 I II 111
0 11-92 12:94 1425
1 11-67 12-54 13-67
2 11-41 12:36 13-14
3 11-16 11-93 12:43
4 10-90 11-49 11-86
5 10-64 1103 11-29
6 10-36 10-55 10-65
7 10-09 10-05 10-00
8 9-80 952 926
9 9-51 901 845
10 9-20 843 7-54
11 8-92 778 6-54
12 8-61 7-07 549
13 8-32 6-37 445
14 7-97 560 315
15 7-65 4-69 1-95
16 728 377 —
17 6-94 278 —
18 6-55 1-62 —
19 6-19 0-31 —
20 579 — —
21 543 — —
22 499 — —
23 459 — —
24 410 — —
25 3-63 — —
26 3-12 — —
27 273 — —
28 2.17 — —
29 1-13 — —
30 — — —

compared with unity. These conditions are only satisfied at very large distances r. For
example, with atmosphere I of table 1 at ¢ = 0-03, and at a distance 1000 km, 7&"/(rk")?
is about unity and r£"/(rk")? is also about unity.

When the method of stationary phase is approximately valid, the duration of the pressure—
time record observed at range r is given by

t,—ty = r{(dk/d0),_,, — (dk/do),-o}, (67)

where ¢ = ¢, is the cut-off frequency for the assumed atmosphere. For the atmospheres
considered in table 1, the distance-durations are given in table 8.
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At distances » which are too small for the stationary-phase method to be valid, no simple
analytical extension is satisfactory. It is not good enough to retain (do)® and drop (00)4;
and in any case, one must include at least the first gradients of F(¢) and £%. A direct numerical
integration is the best procedure. We need numerical values of the real part of the integral

JA:.f%1«o>k%eKW~M+bﬂda.
0

Having chosen a value for 7, we then choose values for ¢ and ¢, guided by (64). Thus the
chosen values of 7, ¢ and ¢, satisfy (60) exactly. Then we rewrite [ in the form
T¢

I — ei{r(o'oké—ko)*“iﬂ}f F(O’) kt eirg do,
0

where 6 = (ky—k) + (0 —0y) k).

TABLE 8

atmosphere (¢, —t,)[r (s km™1)
I 0-155

II 0-419
II1 0-647

We now make numerical integrations to get the real and imaginary parts of the integral
appearing in 1. Suppose that these parts are A and N respectively. Then

pi(rs &) = (poy V[m) (2/mr)* [M cos {r(ooky— ko) +}m}— Nsin{r(ooko—ko) +1m}].  (68)

Having done the integration for this value of ¢, we next take a neighbouring value of ¢,
and make a similarintegration. Most of the numerical values can be used again. Proceeding
in this way, we can construct the pressure—time curve at distance r.

Figures 7 and 8 show pressure-time curves at ground level caused by the introduction
of 1 km?® of air at ground level, calculated by the method just described, for atmosphere I
at distances 1000 and 3500 km and for atmosphere II at distance 3500 km. For atmosphere
I at distance 6400 km, the pressure-time curve was calculated by using (66). It will be seen
from these figures that the pressure oscillations start earlier and finish later than the method
of stationary phase would lead us to expect. However, these wings are unimportant except
at the closest distance, r = 1000 km.

Numerical values

We have already explained that (66) and its modifications are unlikely to give a good
representation of the experimental observations. Nevertheless, it is interesting to apply the
formula to certain observations, and see how large are the values obtained for the energies
of the explosions.

Microbarograms of the Siberian meteorite of 1908 have been published by Astapowitsch
(1934) and Whipple (1930, 1934). Scorer (1950) has reproduced some of them. Yamamoto
(1957) has given a useful reproduction of a number of microbarograms of nuclear explosions
obtained in Japan by Shida and others.

37-2
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Ficure 7. The pressure pulse on the ground in dynes cm~2 km~—3 for Scorer’s atmosphere (atmo-
sphere I of table 1) at distance (¢) 1000 km, (4) 3500 km and (¢) 6400 km. The vertical dashed
lines show where the records would begin and end according to the method of stationary phase.
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Ficure 8. The pressure pulse at the ground at a distance 3500 km in atmosphere II of table 1.
The pulse may be compared with that shown in figure 7 ().

>

|
1
1
:
]
I
I
1
]
1
1
|
!

dynes cm—2 km~3

™o
=
T



http://rsta.royalsocietypublishing.org/

=

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/| \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ATMOSPHERIC WAVES CAUSED BY LARGE EXPLOSIONS 303

If variations in the amplitudes of the waves caused by variations in meteorological con-
ditions over the same geographical route are small, the largest nuclear explosions appear
to be those of 1 March 1954 and 5 May 1954. Each gave a peak to trough maximum
amplitude of about 400 dyn/cm? at a distance of 3500 km.

The Siberian meteorite caused air waves at Leningrad (3740 km) with a maximum peak
to trough amplitude of 360 dyn/cm? and at Kew (5750km), a peak to trough amplitude of
197 dyn/cm?.

If one compares the theoretical curve shown in figure 7, which applies to atmosphere I
of table 1, with the microbarograms mentioned above, the theoretical waves last only for
about 10 min, whereas the observed waves lasted for at least +h. If a model atmosphere
with a cold stratosphere is a suitable model, then atmosphere I should have been a good
choice for calculating the waves from the meteorite. If we use figure 7, and disregard the
fact that the computed duration is too small by a factor of about 3 or more, the observed
amplitudes would indicate that the explosion was equivalent to the introduction of 45 km?3
of air into the atmosphere.

Taking 1 cal of explosive energy as giving an expansion of 8 cm?3 in the atmosphere, the
meteorite had an energy 6 x 10'° calories or 6 MT.

Similarly, atmosphere II and figure 8 should be a good choice in the case of the air waves
recorded in Japan from nuclear explosions in the Pacific. The waves are now more dispersive
and the theoretical duration at 3500 km is nearly $h. If we take the maximum amplitude
per km?3 from figure 8, then the explosions of 1 March and 5 May 1954 were 8 to 10 MT.

Our conclusion is that a two-layer model atmosphere, which is chosen to represent
average conditions up to say 25 or 30 km and having the upper layer colder than the lower
layer, seems in the case of large explosions to give about the correct amplitude for the train
of waves which have periods of about 1 min. However, the theoretical duration of these
slow oscillationsisindependent of the size of the explosion; and, in contrast with experiment,
these slow oscillations are not just a part of an extremely long wave train, containing waves
of much shorter period. In the case of smaller explosions (1013 cal), the calculated waves
are unlike those observed.

A digression on the meteorite

The Siberian meteorite poses a number of fascinating problems. The total energy can be
roughly fixed by the observations on the destruction of trees, but there is the curious absence
of an enormous crater. Whipple (1934) quotes the following description: ‘the coniferous
forest (taiga) was uprooted and burnt to a radius of 10 to 15km by the action of the hot
explosive wave; trees were felled by the air over a radius of 20km and further off, chiefly
on high ground, were uprooted for a distance of 40 to 50km’.

A long-duration blast wave, such as was produced by the impact of the meteorite, would
uproot coniferous trees where the overpressure was about 2 Lb./in.? or more. Taking the
20km radius, quoted by Whipple, as representing the 2Lb./in.? level, one can use the
blast data for ground-burst nuclear devices (U.S.A.E.C. 1957), to estimate the size of the
explosion. The value obtained is 13 MT.

The observation quoted by Whipple that trees were uprooted up to distances of 40 to
50 km, but by implication, only in a ‘patchy’ pattern, is probably explained by refraction
and focusing of the blast, due to local thermal and wind gradients in the atmosphere.
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An explosion of 13 MT on the ground would have produced a crater 300ft. deep and
half a mile in diameter (U.S.A.E.C. 1957). This is enormously greater than anything
reported. Such a crater, if there, could hardly have escaped notice by the explorer Kulik
(1927). Scores of craters were found, the largest perhaps originally one hundred feet across
and a few tens of feet deep.

Whipple (1934) gives astronomical arguments which suggest that the meteorite was
moving at 72km/s when it entered the atmosphere. If the speed was as high as this, the
meteorite probably broke into pieces under the stresses caused by the air resistance. The
thrust per unit area on the ‘nose’ of the meteorite would be approximately pV?, and with
V ="70km/s, the thrust at the nose would be more than 400 tons/in.? at sea level, and
40 tons/in.? at a height of 18 km above the ground, where the air density is one-tenth of
the sea level value.

At some height, a hole would have been punched through the meteorite, and the ring-
shaped residue would then have broken up. Each piece would have gone through the
same breaking-up process, the time-scale decreasing linearly with the size of the fragment.
Provided the aerodynamic forces were much bigger than the mechanical strength of the
meteorite material, the main balance would be between the acrodynamic and the inertial
forces. The time taken to punch a hole through the meteorite can be obtained from a simi-
larity principle and inserting the observed time for this to happen with liquid drops in an
air current.

Mr W. R. Lane has kindly given us the following experimental data. Water drops of
radii 2-0, 1-0 and 0-5 mm in air currents 12-5, 17-5 and 24-7 m/s distorted and developed into
a torus in times 8-5, 2-7, 1-0 ms. If U is the air speed, 7 is the time for a hole to be punched
through, and a is the original radius, the non-dimensional number applying to all water
drops (big enough for surface tension and viscosity to be dominated by the acrodynamical
forces) is UT/a, and Mr Lane’s values give for this number 53, 47 and 49 respectively, an
average of 50.

If the Siberian meteorite had been 15 m in radius and density 1, then at sea level in an
air stream of 70kmy/s, a hole would be punched through in a time 0-01s. If the density of
the meteorite had been 5 and the air density one-tenth of the sea level value, the time
would be larger by a factor (50)%, i.e. a hole would be punched through the middle in
0-07 s.

It may be of interest to note that the Encyclopaedia Britannica states in the article on
Meteorites that a ring-shaped iron meteorite weighing 15001b was found at Tucson,
Arizona, and that jaw-shaped pieces of iron meteorites, obviously parts of a ring, have been
found in South Africa. The middles may have been pushed out by air resistance or by ground
resistance. Some tektites have the shape of a ring or torus, and Mr W. R. Lane informs us
that small spheres of Wood’s metal can be pushed into the shape of a torus by subjecting
them to air blast. Interesting photographs of water drops breaking up in air currents have
been published by Green & Lane (1957).

The Siberian meteorite may well have broken up a few seconds before impact, the
fragments striking the ground over a considerable area. Such a hypothesis would account
for the absence of a major crater.
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8. THE EXPERIMENTAL RESULTS—MAINLY AS REPORTED AT GENEVA

A summary will now be given of the experimental results, mainly as reported at Geneva.

Explosions of energy 102 ergs or more can be recorded at distances of a few thousand
kilometres by standard microbarographs of the type often used in observatories. However,
instruments of this type have a frequency response which is only adequate to record waves
of periods in the range 1 to 5 min. The published records of the Siberian meteorite, and of
large nuclear explosions, usually show a series of waves, lasting up to $h. The amplitudes
are of the order 100dyn/cm?, and the period of the leading wave is 2 to 3 min. The later
waves have periods of 1 min or less, but the durations and amplitudes may not be accurately
recorded in the sense that the frequency response of the instrument may not have been
good enough.

At Geneva, elaborate microbarographic arrays were described, with a sensitivity of
0-1dyn/cm?, a noise-reducing device which would in exceptionally favourable meteoro-
logical conditions reduce the background perhaps to about 0-2 dyn/cm?, and a flat frequency
response over the range 0-025 to 2c/s. This type of equipment gives true records of waves
with periods between a few seconds and a minute. The wave trains recorded by such equip-
ment from large explosions, or natural events, at large distances, last for a long time—
sometimes more than one hour. There are hundreds of ‘waves’, and of course, a great deal
of irregularity. In the wave train there are usually several sets of waves of big amplitude
and fairly well-defined period. The average period of such waves varies with the size of the
explosion.

Smaller explosions also give a complicated wave train. However, as would be expected,
the distances at which records can be obtained for smaller explosions are less than those at
which records can be obtained for the larger explosions. The records obtained for the smaller
explosions are therefore shorter in total duration because less time has elapsed between the
explosion and the recording time, and the dispersion is correspondingly less. The amplitudes
vary considerably with the meteorological conditions. If there are steady winds at 20 to
40 km height, with little wind shear, the signals in the downwind direction are much bigger
than they are crosswind or upwind. For a 1 kT nuclear explosion on or near the ground, the
greatest peak to trough amplitude in the waves at 1000 km has been observed as varying
between 2 dyn/cm? and 32 dyn/cm?. The most striking features of the wave trains are well-
defined short-period waves, the period varying with the energy of the explosion. For ex-
ample, waves with periods of about 10s would be from explosions of a few kilotons, and
waves with periods of more than a minute would be from explosions in the megaton range.

The experimental observations could be interpreted as follows. Explosions in the range
10%° to 102 ergs at ground level give a train of gravity waves; and on the average, allowing
for meteorological variations, the amplitudes and periods of the waves in the wave train
observed at ground level are approximately proportional to the cube root of the energy of
the explosion. Amplitudes, however, show considerable scatter.

Figure 9 shows some experimental records of explosions. The instrument which gave
the record shown fourth did not have a frequency response capable of recording oscillations
faster than of about 2 min duration. That is why the oscillations appear to be so much simpler
than those shown in the other diagrams.
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9. THE BLAST WAVE

The present section makes estimates of the situation prevailing when the blast wave has
travelled out to 75 km. The situation as calculated will be used in the following section as
defining the starting conditions for the gravity wave train.

It is of course impossible to obtain an accurate analytical solution for the blast wave,
and a numerical solution would require the extensive use of a large computer. However,
we believe that the following simple treatment is adequate for our present purpose.

We could assume sound theory for extrapolating the pulse in the uniform atmosphere.
Then the peak pressure and the peak velocity would fall away inversely as R, andthe
duration (or length) of the pulse would be constant. However, this approximation is not
quite adequate. Because the disturbance is weakly finite, especially near the starting
position, which might be taken to be where the overpressure is 1 Lb./in.?, the peak pressure
falls off faster than R~!, and the pulse lengthens as it travels outwards. In the case of megaton
explosions, the decay of PR is nearly 2, and the duration increases by nearly 2. It is our
objective to calculate these factors with reasonable accuracy.

The pressure pulse at ground level from a large explosion at ground level can be estimated
by the method of Brinkley & Kirkwood (1947). The shock overpressure P and the energy K
per unit solid angle in the pulse are given by

PR = Pi{logy, (R/R)}, [
K = K{log,, (R/R)}, ]
where P, K, and R, are constants. Thus, if we know P at two distances, we can calculate

P at all distances, and find how K varies with distance.
U.S.A.E.C. (1957) gives for a 1 kT nuclear explosion at ground level

P =3Lb./in2 when R = 0-64km,
P=1Lb./in2 when R =1-38km.

Substituting in (69), we get P, = 1-145 and R, = 0-286 km. Therefore at R = 75km,
P = 0-00981 Lb./in.2 and the energy in the blast at ground level per unit solid angle at
75 km is 53 9, of the value at 1:38 km.

The expression for 7 can be obtained from the volume integral giving the energy in the

pulse. As the pulse passes radius R, the shape of the p—¢ curve has been assumed to be in-
variant relative to the scale factors P and 7. The approximation is now made that when the

(69)

Ficure 9. The first diagram is a record obtained from an explosion of a few kilotons at a distance
of a few thousand kilometres with favourable upper wind conditions. The second diagram is a
record obtained from a large explosion at a distance of several thousand kilometres. The third
diagram is a record obtained from a large explosion at more than 10000 km. The fourth is a
record obtained in England from a large explosion in the Pacific. The time scale is the same in
the first three records and the maximum amplitudes in the four records, peak to trough, are
2, 8, 20 and 70 dyn/cm? On the first three records, the sensitivity was changed once or
more while the instrument was recording. The vertical lines give 2 dyn/cm? in the various
parts of the record. The instrument with which the fourth record was obtained, while good for
waves of period 1 to 2 min, was inadequate to record waves of shorter period. That is why the
record appears much simpler than the others.

38 Vor. 252. A.
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front is at R, the pulse inside R can be obtained by projecting backwards in radius each p
and u value from the p—t and u—¢ curves at R, using a speed of travel ¢, the velocity of sound,
and increasing the p and « values inversely as the radius 7. This procedure for changing
from a time variation in the pulse at a given radius to a radius variation in the pulse at a
given time is asymptotically correct for sound theory. In the case of weakly finite blast
pulses (<1 Lb./in.2 overpressure), the error in the volume integral of the energy in the pulse
will be small. The energy in the pulse when the front is at R is therefore P2R%*r x some
constant; and substituting the Brinkley—Kirkwood values for PR and K leads to an
expression for 7:
7 = 7o(Fy/ Pr)® K/ Ky
= To{logyo (R/R)}} /{logye (Ro/R)) P, (70)

where 7y, Py, K refer to some standard distance R,,.

For the 1 kT explosion on the ground, when P = 1Lb./in.% the positive phase lasts for
0-53s, and the negative phase is about three times as long. Taking this as the reference
position, 7, is 2:12s, and 7 at 75 km is 1-88 times greater, or 3-98s, at ground level.

Repeating the arithmetic for the case of a 1 MT explosion on the ground we estimate that
at 75 km the duration at ground level is 30-5s.

We must now consider the vertical variation of blast overpressure and total duration
with height, at a distance of 75km. First, we choose the size of the explosion and tabulate
the durations and energies in the horizontal direction at a number of convenient radii,
e.g.2,4,8,15, 20, 30, 40, 50, 60, 70, 75km. We are going to do a step-by-step calculation
for the blast which is travelling upwards at an angle ¢ to the vertical. Suppose that we have
completed one step which has taken us to radius R, and we now wish to extend our values
to R, ,. The average z value for this step is (R, + R, ) sin ¢ and the average air density is
e”?%, where ¢ is yg/c® or, say, 1-4 x 1076, If §7 is the increase in duration at ground level
between R, and R,,,, and if K] is the loss of energy per unit solid angle between R, and
R, ., at ground level, the corresponding quantities in the blast travelling at angle ¢ are

b1z = Qb }

0Kz — Q3 =92 9K, (71)

The meaning of @ is that it represents the enhancement of the shock-overpressure in
terms of the local atmospheric pressure, due to the blast moving in thinner air.
We make a guess at a value for @, and substitute back in the energy equation

e Q¥ = Tan K510 /KD, (72)

There is no difficulty in quickly reaching the correct value of @ in each step.

By starting at a small initial radius for the first step, say 2 km, and neglecting the varia-
tion of 7 around this hemisphere, one can compute the variation of blast pressure and
duration along the direction 4, step by step.

The accuracy of the method depends on the assumption that the blast energy flows only
radially. Moreover, it is necessary to verify that the ‘lifting energy’ against gravity in the
blast pulse is small compared with the energy in the blast. It is in fact less than 1 % in the
cases we have considered.
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For 1kT explosion at ground level, the duration of the pulse at ground level and distance
75km is 3-98s. At the same distance but at height 20 km the duration is 4-63s. The corre-
sponding durations for the 1 MT explosion on the ground are 30-5 and 38-6s. The energies
left in the blast at height 20 km are 86-3 and 80-2 9, respectively of the values at ground level.
The @ values at R = 75km, z = 20km are 3-34 and 3-09 respectively. If one made the
approximation that the energy of the pulse and the duration were constant around the
hemisphere R = 75km, the @ value would be 3-94 at z = 20km. Thus, the shock over-
pressure would be decreased by 3-94 relative to the value at ground level, but relative to
the local atmospheric pressure would be enhanced by 3-94.

If we take the average duration of the blast wave from a large explosion at a distance
75 km, the average being taken between ground level and 40 km, as equal to the duration
at the average height, 20 km, then the 1kT explosion has a duration 4-63s and the 1 MT
explosion has a duration 38-6s. The power-law dependence on energy is slightly less than
the cube root, the power index being 0-31.

One can approximately scale the blast at any radius from one explosion of energy £,
to another of energy E,, wherej3 = E,/E,. The durations are increased by a factor somewhat
less than j, and the amplitudes are increased by a factor somewhat greater than j. The
errors in scaling from 1kT to 1 MT are about 20 9%,.

10. EXCITATION OF GRAVITY WAVES IN A THREE-LAYER ATMOSPHERE

In §7, we have considered the gravity waves due to an explosive source at ground level
in atmospheres with the stratosphere colder than the troposphere. This type of atmosphere
has a simple spectrum of oscillations, extending only to a s-value of approximately 0-05,
or a period of 2 min.

Explosions of energy about 1023 ergs give a blast wave with a duration of the order of
1 min, and explosions of 102 ergs give a blast with a duration of about 6s. The source
function X of (58) gives a fair representation of a blast wave provided T'is put equal to one
quarter of the blast duration. Thus 7 = 155 for explosions of 102 ergs, and T = 1-55 for
explosions of 1020 ergs. Since the maximum value of ¢ for the atmospheres with the colder
stratospheres is at most only 0-05, the variation in X for the different o values of the freely
travelling waves is only a few parts per cent for explosions of 102°ergs, and is of minor
importance for explosions as large as 102% ergs. Thus it is a good approximation to take X
as constant for all allowed ¢ values. Consequently, the theory developed for model atmo-
spheres with a colder stratosphere can only lead to the conclusion that the pressure oscilla-
tions at a distant point at ground level have amplitudes proportional to the energy of the
explosion and periods independent of the energy of the explosion. It is a coincidence that
the duration of the oscillations which we have calculated for various model atmospheres
with colder stratospheres, being of the order of 1 or 2min, happen to be about the same as
those actually observed in the disturbances caused by very large explosions with an energy
content of several megatons. However, the durations observed for kiloton explosions are of
the order 10s, and the theory fails to give such fast oscillations. One must conclude that model
atmospheres with a colder stratosphere are unsatisfactory, at least for explosions in the
kiloton range.

38-2
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If one takes a model atmosphere with the top layer warmer than any of the lower layers,
a much more elaborate spectrum of oscillations is permitted. High frequencies can pro-
pagate freely, and the higher the ¢ value, the more branches are permitted. A model atmo-
sphere of this type appears to have a spectrum of oscillations with sufficient flexibility to
give an explanation of the oscillations. One preferred model has three isothermal layers,
with the middle layer acting as a ‘sound channel’. Unfortunately, the complexity of the
integrations over ¢ and & prevents a complete solution being obtained.

TABLE 9. RELATIVE INTENSITY FUNCTION FOR BRANCHES 7:=0 AND n=1
OF THREE-LAYER ATMOSPHERE OF TABLE 5

10402 103 F (o) 10¢02 103 F (o)
branch n =0 branch n =1

0-31 8:80 2561 —49-09
1 8:25 26 —49-36
2 8:36 28 —51-88
4 9:08 30 —52:93
6 10-:02 35 —53-00
8 11-05 40 —51-45

10 12:15 45 —49:29

15 15:08 50 —46-71

20 18:20 60 —41-09

30 24-90 80 —29-04

40 32-16 81 —28-44

50 39-94

60 48-20

80 66-07

81 67-01

The pressure disturbance at ground level is a simple extension of (61) and is

£ = (o VIS [ doSE (o) (k) letn-torin, (73)
where ¢, is the low-frequency cut-off for the branch », and
F(0) = 2{(0%701+8701) 0701} £3/v (083 0K), (74)
where V= (2—7) g/23, | (75)
fi={*—(r—1) g2/€¥}{1/0?—k2/02}—1’2-}

The expression for F, (o) reduces to

F(0) = —afipk (0= 0,,),
= 0 (0 < 06”)'

For the three-layer model, F, increases with ¢2 for large ¢; for the two-layer model,
F, tends to a constant for large ¢. Table 9 gives values of F,(¢) for the first two branches
of the three-layer model of table 5.

Only an elaborate investigation could cover all the regions of the integration over ¢ for
the pressure disturbance. In each branch, the group velocity do/dk has a stationary value,
and, asymptotically for large ¢, approaches the sound velocity in the middle channel. The
complexity is not surprising. The pulse, as its spreads, is refracted and reflected at each
interface, and in addition there is the complicated dispersion.
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The method of stationary phase, in its simplest form, gives for the pressure disturbance
at large distances at ground level

1= {po1 V| (rasin0)}} 3 F, (o) Z(k,[k;)* cos r(ok,—k,). (76)

This approximation can be used near the start of a branch, but it fails completely at
higher ¢ values, because £;, becomes small. The high s-components travel essentially as a
non-dispersive pulse. Since the group velocity near the head of a branch is appreciably
greater than the group velocity of the high ¢ values, the branch is spread out in time.
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Ficure 10. The pressure pulse on the ground in dynes cm~2 km~3 at distance 6400 km for waves
of periods greater than 70 s of branches n =0 and n = 1 of the three-layer model atmosphere
of table 5, caused by an explosion of 5 MT, for which the blast duration is 63 s. (a) shows the
envelope of the oscillations, which last for about one hour; (#) shows the oscillations due to
branch n = 0, and (¢) those due to branch n = 1, for waves with periods longer than 70 s. We
have taken 1 cal of explosive energy as causing 8 cm3 of air expansion.

(=)

25

Figure 10 gives the pressure oscillations in the branches » = 0 and n = 1 at 6400km in
the atmosphere described in tables 5 and 9, the X function being taken as that calculated
for an explosion with a blast period 207s, i.e. an explosion of 5 MT, including only waves
with periods greater than 70s. A comparison of figures 74, 7¢ and 8 with the envelopes of
the branchesn = 0and » = 1 of figure 10, shows that the amplitudes calculated for explosions
of megaton scale using the three-layer model atmosphere are about two-thirds of those
calculated for the ‘mean European atmosphere’ used by Scorer (model I of table 1), and are

38-3
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about the same as those calculated for a ‘mean Pacific atmosphere’ (model II of table 1).
Using the three-layer model, the Siberian meteorite was about 10 MT, and the nuclear
explosions of 1 March 1954 and 5 May 1954 were also about 10 MT.

The blast wave as the source

The complexity of the expression (76) for p,, the disturbance at ground level, has arisen
in part because the mathematics is attempting to represent a pulse which is reflected and
refracted at the interfaces, as well as being dispersed. It may be helpful to study separately
at least the refraction and total reflexion of the fundamental waves. In this way we obtain
a clearer understanding of the phenomena.

The normal oscillations of the model atmospheres which we have considered are inter-
ference patterns of waves in @ e 72 of the form ei**5z=99 where v and f are given by (75).

These waves are travelling at an angle + 6 to the vertical z-axis, where

k=r«ksinf, f=r«kcosl, «?=k>+pf? } (77)
k% = (02[c2—y2g?[4c*) [{1 — (y—1) g%sin?0/c%5?}. |
The group velocity is therefore
do/dk = ¢(1—w)¥ (1 —y2g2/4c202)}](1 — 2w+ 7252w 4c20?2), (78)

where w= (y—1) g2sin?0/c%02.

Thus for waves with periods about 10s travelling vertically upwards (6 = 0), the group
velocity is only 0-62 part in 1000 slower than the velocity of sound ; and for waves of similar
periods travelling upwards at 30° to the horizontal (§ = ), the group velocity is 0-50 part
in 1000 slower than ¢. Horizontally, the group velocity is 0-115 part in 1000 slower than c.
Since the wavelength is more than 3 km, it is clear that the dispersion in travelling 100 km
is quite small. The main effect on the waves is an increase of amplitude with height due to the
decrease in air density.

Consider the refraction of these waves at a horizontal interface of two isothermal layers,
the upper being denoted by a suffix 2 and the lower by a suffix 1. The refractive index for
a wave travelling from 1 into 2 is given by

U= K;[Kq, (79)
where «; and «, are obtained from (77) by using the appropriate velocity of sound. The
parameters o and £ are of course the same in the two cases.

Strictly speaking, # is a function of ¢, and of the angle of incidence, but for the o-values
and temperature differences in which we are interested, it is a good approximation to
neglect all but one of the terms in «, in which case the familiar formula is obtained:

= Coley. (80)

If¢, and ¢, differ by 10 %, then (80) gives the departure of x from unity with 1 %, accuracy
for wave periods as long as 10s.

If the upper layer is warmer than the lower layer, then a wave at an angle of incidence

equal tosin~! (1/u) gives a refracted wave which is horizontal. Atgreater angles of incidence

there is total reflexion, and the amplitude in the upper layer dies off exponentially away
from the interface.
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If the upper layer is the colder, then the upward travelling wave is refracted towards the
vertical, and total reflexion does not occur. However, a downward coming wave would be
totally reflected at angles of incidence greater than the grazing angle. (This fact suggests
than an explosion well above 40km height would only weakly excite freely travelling
gravity waves which could be recorded at great distances at ground level.)

Consider a stage where the blast wave has expanded sufficiently for it to have penetrated
the uppermost warm layer. The shape is not quite hemispherical because of non-linear
effects and because there has been refraction at the two interfaces, one at 10km and the
other at 40 km. As the blast wave moves further outwards, a time comes when the front is
refracted horizontally at the upper interface. That part of the blast wave which at this stage
is above the upper interface continues its upwards motion, and contributes nothing to the
train of gravity waves at ground level at great distances. That part of the blast wave which
is below the interface is totally reflected at the interface, and sets up a train of gravity waves
which are ‘progressive’ in the horizontal direction and ‘standing’ in the vertical direction.
There has also been, of course, some reflexion before total reflexion sets in.

The model we have chosen has a temperature —15 °C in the layer 0 to 10km, —44°C
in the layer 10 to 40km and 47 °C at 40 km and above. With these values, the blast wave
separates into its two parts when the horizontal radius of the blast is about 75 km.

Consider figure 11. The outermost circular arc represents the front of the blast wave when
its radius is 75km. The other circular arcs give the limits of the positive phase and the
negative phase. The horizontal line represents the nodal planes of the ¢ harmonic oscilla-
tion of the branch 7 of the model atmosphere. For simplicity we shall take the blast wave as
a single sinusoidal oscillation with an ‘effective’ wave length L. The value we take for L is
simply the velocity of sound ¢ times the duration 7 of the blast wave. (Figure 6 shows that
this is the wavelength most excited by the blast.)

There is approximate ‘matching’ between the blast wave and the oscillation of the nth
branch in the region of a point P provided

rjz ~ klf ~ tanl, 2m]k ~ L ~ 2mc/o.
Moreover, we have approximately that
B = (2n+1)7[2(z5—2,),
where zy=10km and z;=40km.

Thus, that part of the blast wave at height z is exciting ¢ values approximately equal to
2mc/L in the nth branch, where
z=(2n+1)rL[/4(z;—z,).

Since the maximum value of z is 40 km, we find on substituting the numerical values that
the maximum value of 7 is given by

(2n+1) L = 64 km.

A blast wave with an effective length of 2 km excites all » values up to about 16; while a
blast wave with an effective length of 20 km excites only branches up to n = 1, i.e. it excites
only n =0 and n = 1.
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We have shown in §9 that an explosion of 1kT gives a blast wave with a duration of
4-63s, i.e. an effective L value of about 1-5km. A 1kT explosion therefore excites about
twenty branches. An explosion of 1 MT has an effective length about ten times greater,
and therefore substantially excites only the first two branches.

Formally, of course, any explosion will excite every permitted value of every branch.
The oscillations at ground level at a distant point due to the excitation of the nth branch
will therefore be of the form

o0
(G} [ 4y etrtr-svin d,

where 4, is the excitation function for the branch, £, is a function of ¢ as calculated for
the branch and £, is the horizontal co-ordinate of that region of the blast wave which excites
the nth branch at the starting position, i.e. point P of figure 11.

4

Fircure 11. The blast wave in the vicinity of the point P is exciting the nth branch of the freely
travelling gravity waves because there is a good match near P in both the horizontal and
vertical ‘wavelengths’.

Using the method of stationary phase, in a way similar to that used in obtaining (61),
we get that the oscillations at a distant point 7 are given by

0p, = S,(7) cos{(r—¢,) (k,—k,)};
where time is calculated from t=(r—£&,) k,,

S, is a weighting function dependent on the size of the explosion, and &, is a starting radius
varying between 75 and 65 km, according to the size of the explosion and the branch which
is excited.

The weighting function has a blunt maximum for ¢ values equal to 27¢/L, where L is the
length of the blast wave as it would be in an isotropic atmosphere at a distance of a few tens
of kilometres. In other words, the greatest waves in the disturbance should have an average
period roughly equal to the duration of the blast wave at a distance of a few tens of kilo-
metres in an isotropic atmosphere.
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The pressure disturbance at r will be the sum of the pressure oscillations in each branch.
The times at which each branch starts and ends at point r are independent of the size of the
explosion, but when the sum over all branches is taken, the pressure disturbance at r is
quite different for explosions of widely different energies. At distances of 1000 km or more,
the pressure disturbance in the simple model atmosphere we have considered is extremely
complicated. When the effects of atmospheric wind structure and turbulence are imagined
to be superimposed, the pressure oscillations will have a truly formidable complexity, com-
parable with that in the experimental records of figure 9. However, as we have shown, the
average period of the largest waves gives an indication of the size of the explosion; and in
the case of the explosions of 10 cal or more, the amplitudes of the biggest waves usually
will give a confirming value of the size.

Perhaps our most interesting conclusion is that the Siberian meteorite had an energy of
(10-+5) x 10'% cal, or 104-5 MT, and was close in energy to the largest of the man-made
nuclear explosions.
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